45 research outputs found

    Employment at Will in Alaska: The Question of Public Policy Torts

    Get PDF
    Recent research efforts are considering the problem of performing control of dynamical systems over wireless sensor and actuator networks. However, existing results lack an experimental evaluation in real platforms. In this demonstration an inverted pendulum system is controlled over an IEEE 802.15.4 wireless sensor and actuator network. This platform can evaluate several sensor networks and control algorithms and is currently used as an educational tool at KTH Royal Institute of Technology, Sweden.QC 20120329</p

    Hybrid Communication Protocols and Control Algorithms for NextGen Aircraft Arrivals

    Get PDF
    Capacity constraints imposed by current air traffic management technologies and protocols could severely limit the performance of the Next Generation Air Transportation System (NextGen). A fundamental design decision in the development of this system is the level of decentralization that balances system safety and efficiency. A new surveillance technology called automatic dependent surveillance-broadcast (ADS-B) can be potentially used to shift air traffic control to a more distributed architecture; however, channel variations and interference with existing secondary radar replies can affect ADS-B systems. This paper presents a framework for managing arrivals at an airport by using a hybrid centralized/distributed algorithm for communication and control. The algorithm combines the centralized control that is used in congested regions with the distributed control that is used in lower traffic density regions. The hybrid algorithm is evaluated through realistic simulations of operations around a major airport. The proposed strategy is shown to significantly improve air traffic control performance under various operating conditions by adapting to the underlying communication, navigation, and surveillance systems. The performance of the proposed strategy is found to be comparable to fully centralized strategies, despite requiring significantly less ground infrastructure.National Science Foundation (U.S.) (Grant CNS-931843)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N0014-08-0696)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-12-1-0609)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-10-1-0567

    High Confidence Networked Control for Next Generation Air Transportation Systems

    Get PDF
    This paper addresses the design of a secure and fault-tolerant air transportation system in the presence of attempts to disrupt the system through the satellite-based navigation system. Adversarial aircraft are assumed to transmit incorrect position and intent information, potentially leading to violations of separation requirements among aircraft. We propose a framework for the identification of adversaries and malicious aircraft, and then for air traffic control in the presence of such deliberately erroneous data. The framework consists of three mechanisms that allow each aircraft to detect attacks and to resolve conflicts: fault detection and defense techniques to improve Global Positioning System (GPS)/inertial navigation, detection and defense techniques using the Doppler/received signal strength, and a fault-tolerant control algorithm. A Kalman filter is used to fuse high frequency inertial sensor information with low frequency GPS data. To verify aircraft position through GPS/inertial navigation, we propose a technique for aircraft localization utilizing the Doppler effect and received signal strength from neighboring aircraft. The control algorithm is designed to minimize flight times while meeting safety constraints. Additional separation is introduced to compensate for the uncertainty of surveillance information in the presence of adversaries. We evaluate the effect of air traffic surveillance attacks on system performance through simulations. The results show that the proposed mechanism robustly detects and corrects faults generated by the injection of malicious data. Moreover, the proposed control algorithm continuously adapts operations in order to mitigate the effects these faults. The ability of the proposed approaches to defend against attacks enables reliable air traffic operations even in highly adversarial surveillance conditions.National Science Foundation (U.S.) (CNS-931843)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N0014-08-0696)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-09-1-1051)United States. Office of Naval Research (Grant N00014-12-1-0609)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-10-1-0567

    Modeling, Analysis and Design of Wireless Sensor Network Protocols

    No full text
    Wireless sensor networks (WSNs) have a tremendous potential to improve the efficiencyof many systems, for instance, in building automation and process control.Unfortunately, the current technology does not offer guaranteed energy efficiencyand reliability for closed-loop stability. The main contribution of this thesis is toprovide a modeling, analysis, and design framework for WSN protocols used in controlapplications. The protocols are designed to minimize the energy consumption ofthe network, while meeting reliability and delay requirements from the applicationlayer. The design relies on the analytical modeling of the protocol behavior.First, modeling of the slotted random access scheme of the IEEE 802.15.4medium access control (MAC) is investigated. For this protocol, which is commonlyemployed in WSN applications, a Markov chain model is used to derive theanalytical expressions of reliability, delay, and energy consumption. By using thismodel, an adaptive IEEE 802.15.4 MAC protocol is proposed. The protocol designis based on a constrained optimization problem where the objective function is theenergy consumption of the network, subject to constraints on reliability and packetdelay. The protocol is implemented and experimentally evaluated on a test-bed. Experimentalresults show that the proposed algorithm satisfies reliability and delayrequirements while ensuring a longer lifetime of the network under both stationaryand transient network conditions.Second, modeling and analysis of a hybrid IEEE 802.15.4 MAC combining theadvantages of a random access with contention with a time division multiple access(TDMA) without contention are presented. A Markov chain is used to model thestochastic behavior of random access and the deterministic behavior of TDMA.The model is validated by both theoretical analysis and Monte Carlo simulations.Using this new model, the network performance in terms of reliability, averagepacket delay, average queueing delay, and throughput is evaluated. It is shown thatthe probability density function of the number of received packets per superframefollows a Poisson distribution. Furthermore, it is determined under which conditionsthe time slot allocation mechanism of the IEEE 802.15.4 MAC is stable.Third, a new protocol for control applications, denoted Breath, is proposedwhere sensor nodes transmit information via multi-hop routing to a sink node. Theprotocol is based on the modeling of randomized routing, MAC, and duty-cycling.Analytical and experimental results show that Breath meets reliability and delayrequirements while exhibiting a nearly uniform distribution of the work load. TheBreath protocol has been implemented and experimentally evaluated on a test-bed.Finally, it is shown how the proposed WSN protocols can be used in controlapplications. A co-design between communication and control application layers isstudied by considering a constrained optimization problem, for which the objectivefunction is the energy consumption of the network and the constraints are thereliability and delay derived from the control cost. It is shown that the optimaltraffic load when either the communication throughput or control cost are optimizedis similar.QC 2011021

    Protocol Design for Control Applications using Wireless Sensor Networks

    No full text
    Given the potential benefits offered by wireless sensor networks(WSNs), they are becoming an appealing technology for process,manufacturing, and industrial control applications. In thisthesis, we propose a novel approach to WSN protocol design forcontrol applications. The protocols are designed to minimize theenergy consumption of the network, while meeting reliability andpacket delay requirements. The parameters of the protocol areselected by solving a constrained optimization problem, where theobjective is to minimize the energy consumption and theconstraints are the probability of successful packet reception andthe communication delay. The proposed design methodology allowsone to perform a systematic tradeoff between the controlrequirements of the application and the network energyconsumption. An important step in the design process is thedevelopment of analytical expressions of the performanceindicators. We apply the proposed approach to optimize the networkfor various communication protocols. In Paper A, we present an adaptive IEEE 802.15.4 for energyefficient, reliable, and low latency packet transmission. Thebackoff mechanisms and retry limits of the standard are adapted tothe estimated channel conditions. Numerical results show that theproposed protocol enhancement is efficient and ensures a longerlifetime of the network under different conditions. Furthermore,we investigate the robustness and sensitivity of the protocol topossible errors during the estimation process.   In Paper B, we investigate the design and optimization ofduty-cycled WSNs with preamble sampling over IEEE 802.15.4. Theanalytical expressions of performance indicators are developed andused to optimize the duty-cycle of the nodes to minimize energyconsumption while ensuring low latency and reliable packettransmissions. The optimization results in a significant reductionof the energy consumption compared to existing solutions. The cross-layer protocol called Breath is proposed in Paper C. Theprotocol is suitable for control applications by using theconstrained optimization framework proposed in the thesis. It isbased on randomized routing, CSMA/CA MAC, and duty-cycling. Theprotocol is implemented and experimentally evaluated on a testbed,and it is compared with a standard IEEE 802.15.4 solution. Breathexhibits a good distribution of the work load among the networknodes, and ensures a long network lifetime.    Korr av felaktigt ISBN; 978-91-7415-441-5</p

    Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network

    No full text
    Fault detection and diagnosis is one of the most critical components of preventing accidents and ensuring the system safety of industrial processes. In this paper, we propose an integrated learning approach for jointly achieving fault detection and fault diagnosis of rare events in multivariate time series data. The proposed approach combines an autoencoder to detect a rare fault event and a long short-term memory (LSTM) network to classify different types of faults. The autoencoder is trained with offline normal data, which is then used as the anomaly detection. The predicted faulty data, captured by autoencoder, are put into the LSTM network to identify the types of faults. It basically combines the strong low-dimensional nonlinear representations of the autoencoder for the rare event detection and the strong time series learning ability of LSTM for the fault diagnosis. The proposed approach is compared with a deep convolutional neural network approach for fault detection and identification on the Tennessee Eastman process. Experimental results show that the combined approach accurately detects deviations from normal behaviour and identifies the types of faults within the useful time

    Modeling, Analysis and Design of Wireless Sensor Network Protocols

    No full text
    Wireless sensor networks (WSNs) have a tremendous potential to improve the efficiencyof many systems, for instance, in building automation and process control.Unfortunately, the current technology does not offer guaranteed energy efficiencyand reliability for closed-loop stability. The main contribution of this thesis is toprovide a modeling, analysis, and design framework for WSN protocols used in controlapplications. The protocols are designed to minimize the energy consumption ofthe network, while meeting reliability and delay requirements from the applicationlayer. The design relies on the analytical modeling of the protocol behavior.First, modeling of the slotted random access scheme of the IEEE 802.15.4medium access control (MAC) is investigated. For this protocol, which is commonlyemployed in WSN applications, a Markov chain model is used to derive theanalytical expressions of reliability, delay, and energy consumption. By using thismodel, an adaptive IEEE 802.15.4 MAC protocol is proposed. The protocol designis based on a constrained optimization problem where the objective function is theenergy consumption of the network, subject to constraints on reliability and packetdelay. The protocol is implemented and experimentally evaluated on a test-bed. Experimentalresults show that the proposed algorithm satisfies reliability and delayrequirements while ensuring a longer lifetime of the network under both stationaryand transient network conditions.Second, modeling and analysis of a hybrid IEEE 802.15.4 MAC combining theadvantages of a random access with contention with a time division multiple access(TDMA) without contention are presented. A Markov chain is used to model thestochastic behavior of random access and the deterministic behavior of TDMA.The model is validated by both theoretical analysis and Monte Carlo simulations.Using this new model, the network performance in terms of reliability, averagepacket delay, average queueing delay, and throughput is evaluated. It is shown thatthe probability density function of the number of received packets per superframefollows a Poisson distribution. Furthermore, it is determined under which conditionsthe time slot allocation mechanism of the IEEE 802.15.4 MAC is stable.Third, a new protocol for control applications, denoted Breath, is proposedwhere sensor nodes transmit information via multi-hop routing to a sink node. Theprotocol is based on the modeling of randomized routing, MAC, and duty-cycling.Analytical and experimental results show that Breath meets reliability and delayrequirements while exhibiting a nearly uniform distribution of the work load. TheBreath protocol has been implemented and experimentally evaluated on a test-bed.Finally, it is shown how the proposed WSN protocols can be used in controlapplications. A co-design between communication and control application layers isstudied by considering a constrained optimization problem, for which the objectivefunction is the energy consumption of the network and the constraints are thereliability and delay derived from the control cost. It is shown that the optimaltraffic load when either the communication throughput or control cost are optimizedis similar.QC 2011021
    corecore